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Dear CIM Colleagues,

On behalf of CIM, I would like to invite you to partici-
pate in the forthcoming CIM-MPE events being organ-
ized as part of the year-long, global celebration — Math-
ematics of Planet Earth 2013 (MPE-2013). These events 
are enthusiastically supported by many Portuguese in-
stitutions, including: SPM; SPE; APDIO; CEMAPRE; 
CEAUL; CMA-UNL; CMAF-UL; CMUP; INESC-
TEC; ISR; IT; UECE; Fernando Santos Sucessores Lda; 
FCUL; ISEG; Calouste Gulbenkian Foundation and 
Ciência Viva.
 One CIM-MPE event is the international conference, 
Planet Earth, Dynamics, Games and Science, which will 
be held September 2–4, 2013 at the Calouste Gulbenkian 
Foundation. In addition to the conference an advanced 
school will be held August 26–31 and September 5–7 at 
the Instituto Superior de Economia e Gestão ISEG in 
Lisbon, Portugal.
 Distinguished Keynote speakers and lecturers will 
include: Eric Maskin, CIM-SPM Pedro Nunes Lec-
ture, Institute for Advanced Studies, USA (scheduled); 
Michel Benaim, Université de Neuchâtel, Switzer-
land; Jim Cushing, University of Arizona, USA; João 
Lopes Dias, Universidade Técnica de Lisboa, Portugal; 
Pedro Duarte, Universidade de Lisboa, Portugal; Di-
ogo Gomes, Universidade Técnica de Lisboa, Portugal; 
Yunping Jiang, City University of New York, USA; 
Jorge Pacheco, Universidade do Minho, Portugal; Da-

vid Rand, University of Warwick, UK; Martin Shubik, 
Yale University, USA (by video); Satoru Takahashi, 
Princeton University, USA; Marcelo Viana, Instituto 
de Matemática Pura e Aplicada IMPA, Brazil
 If you are interested in being involved in this confer-
ence, CIM is accepting proposals for thematic sessions.  
Proposals should include a session title and names and 
affiliations of 3–5 proposed speakers. If you are not in-
terested in organizing a full session, but would like to 
give a presentation, send an email with your presentation 
title and abstract for consideration. Session proposals and 
presentation applications should be sent to aapinto@fc.up.pt 
and info.mpe2013@sqig.math.ist.utl.pt, by June 30.
 Please remember to visit the event website to regis-
ter: http://mpe2013.org/workshop/dgs-2013-international-conference-and-
advanced-school-planet-earth-dynamics-games-and-science-portugal-26-au-

gust-to-7-september-2013/

 The above conference and advanced schools are part 
of an ongoing series of events for MPE 2013, organized 
by CIM for Portugal. In March, CIM hosted the first 
CIM-MPE events — the international conference and 
advanced school, Planet Earth, Mathematics of Energy 
and Climate Change. Attendees at the opening ceremo-
ny were honored with the participation of the Honor-
able Mr. Secretary of State Professor João Queiró, FCT 
Board Member Professor Paulo Pereira, Portuguese 
Mathematical Society President Professor Miguel Abreu, 
Portuguese Statistical Society Board Member Professor 
Manuela Neves, MPT 2013 Executive Committee Mem-

mailto:aapinto@fc.up.pt
mailto:info.mpe2013@sqig.math.ist.utl.pt
http://mpe2013.org/workshop/dgs-2013-international-conference-and-advanced-school-planet-earth-dynamics-games-and-science-portugal-26-august-to-7-september-2013/
http://mpe2013.org/workshop/dgs-2013-international-conference-and-advanced-school-planet-earth-dynamics-games-and-science-portugal-26-august-to-7-september-2013/
http://mpe2013.org/workshop/dgs-2013-international-conference-and-advanced-school-planet-earth-dynamics-games-and-science-portugal-26-august-to-7-september-2013/
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Coming Events

92nd European Study Group with Industry 2012 
May, 6–10, 2013

ISEC—Institute of Engineering, Polytechnic of Coimbra, 
Coimbra—Portugal
http://dfm.isec.pt/esgi92/

The 92nd European Study Group with Industry will be held 
from May 6 to May 10 2013 at ISEC (http://www.isec.pt/), 
the Coimbra Institute of Engineering, Polytechnic of Coim-
bra, Portugal, organized by the Department of Mathematics 
and Physics, ISEC-DMF (http://www.dfm.isec.pt/) and LCM 
– Laboratory for Computational Mathematics (http://www.
uc.pt/uid/lcm) of Centre for Mathematics of the University 
of Coimbra (https://cmuc.mat.uc.pt/rdonweb/).

 This meeting is part of the series of European Study 
Groups and will count with the participation of several Euro-
pean experts with a large experience in this type of events. 
The purpose of these meetings is to strengthen the links be-
tween Mathematics and Industry by using Mathematics to 
tackle industrial problems, which are proposed by industrial 
partners.
 More information on Portuguese Study Groups is avail-
able at http://www.ciul.ul.pt/~freitas/esgip.html, while gener-
al information on study groups and related aspects is avail-
able at the International Study Groups website (http://www.
maths-in-industry.org), the Smith Institute (http://www.smith-
inst.ac.uk) and the European Consortium for Mathematics 
in Industry (http://www.ecmi-indmath.org/info/events.php).

ber Professor Adérito Araújo, CMAF President Profes-
sor Luís Sanches, CMA Member Professor Fábio Chalub, 
Dom Luiz Institute Director Professor Pedro Miranda 
and the former CIM Presidents Professor José Perdigão 
Dias da Silva and Professor José Francisco Rodrigues.
 During the Opening Ceremony, the President of 
CIM, together with Secretary Queiró, awarded the CIM 
Medals to the following distinguished recipients: José 
Perdigão Dias da Silva, Universidade de Lisboa; L. 
Trabucho de Campos, Universidade Nova de Lisboa; 
Joaquim João Júdice, Universidade de Coimbra; José 
Francisco Rodrigues, Universidade de Lisboa
 The CIM Medals are awarded to mathematicians in 
recognition of meritorious contributions made during 
their scientific careers and to acknowledge their signifi-
cant influence on the development of Mathematics in 
Portugal through affiliation with CIM.
 In addition to those who participated in the opening 
ceremonies, CIM would like to thank the following key-
note speakers and lecturers for their wonderful presenta-
tions: Richard James, CIM-SPM Pedro Nunes Lecture 
University of Minnesota, USA; Inês Azevedo, Carnegie 
Mellon University, USA; Christopher K. R. T. Jones, 
University of North Carolina, USA; Pedro Miranda, 
Universidade de Lisboa, Portugal ; Keith Promislow, 
Michigan State University, USA; Richard L. Smith, 
University of North Carolina, USA; José Xavier, Uni-
versidade de Coimbra, Portugal; David Zilberman, Uni-
versity of California, Berkeley, USA
 CIM also appreciates the 60 invited speakers for their 
enlightening presentations and sincerely thanks the ses-
sion organizers for their effort, commitment and dedica-
tion that was so vital for the success of the events: Ivette 
Gomes, Universidade de Lisboa; Stéphane Louis Clain, 
Universidade do Minho; Carlos Ramos, Universidade 
de Évora; Miguel Centeno Brito, Universidade de 
Lisboa; Raquel Menezes, Universidade do Minho; José 
Luís dos Santos Cardoso, Universidade de Trás-os-
Montes e Alto Douro; Mário Gonzalez Pereira, Uni-
versidade de Trás-os-Montes e Alto Douro; Patrícia 
Gonçalves, Universidade do Minho; João Gama, Uni-

versidade do Porto; Delfim F. M. Torres, Universi-
dade de Aveiro; Paulo A. V. Borges, Universidade dos 
Açores; João Paulo Almeida, Instituto Politécnico de 
Bragança; Alberto Adrego Pinto, Universidade do 
Porto ; Nico Stollenwerk, Universidade de Lisboa; 
Tânia Pinto Varela, Universidade Técnica de Lisboa; 
Maria da Conceição Carvalho, Universidade de Lis-
boa; António Pacheco Pires, Universidade Técnica de 
Lisboa; Margarida Brito, Universidade do Porto; Síl-
vio M.A. Gama, Universidade do Porto; João Emílio 
Almeida, Universidade do Porto.
 In addition, CIM especially thanks Irene Fonse-
ca for her scientific guidance, Antónia Turkman for 
her assistance with the Calouste Gulbenkian Founda-
tion, Telmo Parreira for organizing and compiling 
the proceedings, and Paulo Mateus, Pedro Baltazar 
and Telmo Parreira for developing and maintaining 
the conference website. CIM thanks the CGF staff and 
members of the local organizing committee (Alberto 
Pinto, FCUP; Paulo Mateus, IST; Pedro Baltazar, 
IST; Telmo Parreira, FCUP; Abdelrahim Mousa, 
FCUP; João Almeida, IPB; Renato Soeiro, FCUP; 
João Coelho, FCUP; Bruno Neto, FCUP; Filipe 
Martins, FCUP; Joana Becker, FCUP, Renato Fer-
nandes, FCUP, Ricardo Cruz FCUP), as well as the 
Calouste Gulbenkian Foundation, for incredible hospi-
tality, throughout the event and for providing the speak-
ers and participants with the opportunity to experience 
the friendly ambiance in the beautiful city of Lisbon.
 Finally, CIM would like to remind you that review 
and research articles related to the two conferences will 
be published in the first two volumes of the CIM Series 
in Mathematical Sciences, which will be published by 
Springer-Verlag. The editors, Jean Pierre Bourguignon, 
Rolf Jeltsch, Alberto Pinto and Marcelo Viana, invite 
conference participants to submit review and research 
articles for consideration to aapinto@fc.up.pt and info.mpe2013@

sqig.math.ist.utl.pt by December 31, 2013.

Alberto Adrego Pinto
President of CIM

The CIM Bulletin is published twice a year
Material intended for publication should be sent to one of the editors.

The Bulletin is available at www.cim.pt

The CIM acknowledges the financial support of FCT–Fundação para a Ciência e a Tecnologia

Editors
Adérito Araújo (alma@mat.uc.pt)
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Sílvio Gama (smgama@fc.up.pt)
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IIIUL-Universidade de Lisboa
Av. Prof. Gama Pinto, 2
1649-003 Lisboa
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by Manuel Delgado [CMUP and DM-FCUP, University of Porto] and
Pedro García Sánchez [Dep. Álgebra, University of Granada] 

with the Scientific Committee members of the 
Iberian Meeting on Numerical Semigroups 
— Vila Real 2012 

An Interview

By the occasion of the Iberian Meeting on Numerical Semigroups -- Vila Real 2012, that held at the
UTAD, from the 18th to the 20th of July, we posed some questions to the members of the Scientific 
Committee. These are Valentina Barucci, from the Università di Roma La Sapienza; José Carlos 
Rosales, from the Universidad de Granada; Ralf Fröberg, from the Stockholms Universitet; and 
Scott Chapman, from the Sam Houston State University.
 Valentina Barucci most cited work (with over 70 cites) on numerical semigroups is her book on 
maximality properties on numerical semigroups with applications to one-dimensional analytically 
irreducible local domains, which has been for years a dictionary between these two mathematical 
objects. Valentina gave a talk in this meeting on differential operators on semigroup rings.
 José Carlos Rosales wrote his thesis on numerical semigroups, and since then he wrote more 
than a hundred papers on this and related topics.
 Ralf Fröberg most famous paper on numerical semigroups is On numerical semigroups that 
used numerical semigroups to solve problems on one-dimensional local rings. This paper has been 
cited over 65 times. In this meeting he gave a talk showing that homological tools can be used to 
give elegant answers to questions arising in the study of numerical semigroups.
 Scott Chapman uses numerical semigroups in the study of non-unique factorization invariants, 
and also in the study of ideal theory on semigroup rings. He is currently editor in chief of the 
American Mathematical Monthly.

Coming Events

Ist Portuguese Meeting on Mathematics for Industry
6th to 8th June 2013

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 687, 4169-007 Porto
Portugal
http://cmup.fc.up.pt/cmup/apmind/meeting2013/

The Portuguese Meetings on Mathematics for Industry will 
give sequence to Porto Meetings on the same topic. To view 
previous versions please see

http://cmup.fc.up.pt/cmup/apmind/meeting2013/

The purpose of this meeting is to focus the attention on the 
many and varied opportunities to promote applications of 
mathematics to industrial problems. Its major objectives are:

•  Development and encouragement of industrial and 
academic collaboration, facilitating contacts between 
academic, industrial, business and finance users of 
mathematics

•  Through “bridging the industrial/academic barrier” 
these meetings will provide opportunities to present 
successful collaborations and to elaborate elements 
such as technology transfer, differing vocabularies 

and goals, nurturing of contacts and resolution of is-
sues.

•  To attract undergraduate students to distinctive and 
relevant formation profiles, motivate them during their 
study, and advance their personal training in Math-
ematics and its Applications to Industry, Finance, etc.

The meeting will be focused on short courses, of three one-
hour lectures each, given by invited distinguished research-
ers, which are supplemented by contributed short talks by 
other participants and posters of case studies. This edition 
is especially dedicated to two main themes:

•  Optimization and Financial Mathematics
•  Mathematical Epidemiology

Special participation of members of the Analytics & Deci-
sion Models Area, Millennium bcp/Banco Comercial Por-
tuguês, SA.
 The meeting is promoted by APMInd (Portuguese As-
sociation of Mathematics for Industry: http://cmup.fc.up.pt/
cmup/apmind/) as one of the activities of both GEMAC (Gabi-
nete de Estatística, Modelação e Aplicações Computacion-
ais: http://cmup.fc.up.pt/cmup/gemac/) and Master course 
in Mathematical Engineering (http://www.fc.up.pt/dmat/eng-
mat/).

http://ind.millenniumbcp.pt/pt/particulares/Pages/Welcome.aspx
http://ind.millenniumbcp.pt/pt/particulares/Pages/Welcome.aspx
http://cmup.fc.up.pt/cmup/apmind/
http://cmup.fc.up.pt/cmup/apmind/
http://cmup.fc.up.pt/cmup/gemac/
http://www.fc.up.pt/dmat/engmat/
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Can you tell us when did your interest on numerical sem-
igroups started? And what was the motivation?

Valentina.— I started to be interested in numerical semigroups after 
meeting Ralf Fröberg, who proposed me some problems in this subject. 
The problems were very concrete and at the same time they implied 
some consequences for geometric objects, as monomial curves, so I 
felt attached soon.

José Carlos.— I started doing mathematical research by treating 
problems in this field. My doctoral thesis defended in Granada in 1991 
was entitled Numerical Semigroups.

Ralf.— I became interested in numerical semigroups in the 1980’s. 
Mostly by chance, we and two colleagues (Gottlieb, Häggkvist) started 
to discuss the subject and finally we wrote a paper. Then I met 
Valentina Barucci and we started to work on problems concerning 
numerical semigroup rings. This joint work continued for many years, 
and later included Marco D’Anna. Our interest comes from one-
dimensional rings, which has a lot to do with numerical semigroups.

Scott.— My main doctoral thesis problem involved studying the ideal 
theory of particular semigroup rings. While the actual work was in 
Commutative Algebra, I was fascinated by the structure of numerical 
monoids. As I began to work more and more on factorization problems, 
I began applying the ideas and techniques of the theory of non-unique 
factorizations to numerical monoids and semigroups.

Would you recommend the study of numerical semi-
groups to start a research career?

José Carlos.— Over the years I have never abandoned the research 
on this topic. It is to me an exciting field in which many problems 
appear naturally and in which there are increasingly more researchers 
involved. This is the reason why I, undoubtedly, would recommend this 
field to someone interested in research in mathematics.

Scott.— Enthusiastically! Many of my publications involving 
numerical monoids and semigroups have been written with students 
who worked under my direction on research supported by the National 
Science Foundation. While problems in numerical semigroups become 
extremely difficult, the background for getting started is merely 
rational number theory. Students can quickly get basic results, but 
just as quickly learn how challenging mathematics can become.

Have you had students that successfully defended their 
PHD thesis in numerical semigroups?
José Carlos.— I have supervised 5 doctoral theses and in all of them 
the study of numerical semigroups has played an important role.

Ralf.— I have had two students, who partly wrote their thesis on 
numerical semigroups, and I also worked informally as supervisor to 
two guest students from Italy, mainly on numerical semigroups.

Scott.— My institution does not support a doctoral program. But, 
many of my past students who started their careers studying 
numerical monoids, later went on to complete Ph.D. degrees at very 
high quality American institutions. Moreover, they remain interested 
in the subject and have even in the past attended at least one 
of the meetings in the IMNS series. Examples are Paul Baginski 
(Ph.D. University of California at Berkeley) and Nathan Kaplan (Ph.D. 
expected this year from Harvard).

Do you plan to continue working on numerical semi-
groups? Would you like to mention some open question 
in the area that you feel like one of the most important?

José Carlos.— Absolutely. There are many issues to deepen and many 
open problems which, undoubtedly, attract the attention of many 
mathematicians. In this line I would highlight the Frobenius problem, 
the Wilf conjecture and the Bras-Amoros conjecture.

Scott.—Yes, I plan on continuing to work in this area. Here is an open 
problem that I think is particularly important. Let S be a numerical 
monoid and assume its elements are listed in increasing order as 
S=s1, s2, s3, …. In the paper Delta sets of numerical monoids are 
eventually periodic, (Aequationes Math. 77 (2009), 273–279) written 
by Chapman, Hoyer and Kaplan, it is shown the the sequence of delta 
sets ∆(s1), ∆(s2), ∆(s3), … is eventually periodic. Is the same true for 
the sequences c(s1), c(s2), c(s3), … and t(s1), t(s2), t(s3), … where 
c(x) represents the catenary degree of x in S and t(x) the tame degree 
of x in S ?

Which is from your point of view the most important 
question on numerical semigroups that has been solved? 
What was its impact and relevance in other areas of Math-
ematics?

José Carlos.— The study of numerical semigroups is a classic theme. 
However, from the second half of the twentieth century suffered a 
major boost due to its applications in many and interesting fields 
such as algebraic geometry, coding theory, number theory and 
computer algebra.

Ralf.— I am not able to point at the most important theorem in 
numerical semigroup theory. I think that several connections with 
other subjects will be found, so perhaps it is too early to say what is 
most important.

Scott.— My interest in numerical semigroups centers in the study 
of non-unique factorizations. While there are significant papers 
concerning the structure of numerical semigroups, I will focus on 
their factorization properties in answering this question. I think the 
solution of the question cited above (about the eventual periodicity 
of the sequence of delta sets) is a very important result. The wealth 

of results on the factorization properties of numerical monoids has 
led to similar investigations in other types of monoids (such as block 
monoids, Diophantine monoids and congruence monoids) which might 
have otherwise never been completed.

Has the study of numerical semigroups some relevance 
in the mathematics developed in your country? Is it dif-
ficult to get funding for doing research in numerical 
semigroups?

José Carlos.— In my opinion the importance of this line of research 
is comparable to the most relevant lines of mathematical research. 
That is why we have not had difficulties in obtaining funds through 
national and regional research projects.

Ralf.— It is generally hard to get money for research in Sweden, not 
particularly for semigroups.

Scott.— Yes, it has particular relevance in Commutative Algebra 
and Algebraic Geometry. It is difficult in the United States to obtain 
funding for almost any pure mathematical subject. I have over the 
past 15 years obtained such funding on three different occasions 
from the National Science Foundation to run Research Experiences in 
Mathematics Programs for undergraduate students.

This is the third edition of the Iberian Meeting on Nu-
merical Semigroups. The authors of this interview have 
been in charge of the organization of all the three edi-
tions, with very important collaborations in the second 
and third. Its success has exceeded by far the initial ex-
pectations for a meeting that was intended to gather to-
gether mathematicians from various areas where numeri-
cal semigroups appear in a rather informal way. Please 

Membros da Comissão Científica, organizadores e organizadores locais do IMNS 2012. Da esquerda para a direita:
Luís Roçadas, UTAD, Ralf Froberg, Stockholms Universitet, Scott Chapman, Sam Houston State University,
Valentina Barrucci, Univ. di Roma La Sapienza, Paula Catarino, UTAD, P. A. García-Sánchez, Universidad de Granada,
José Carlos Rosales, Universidad de Granada, André Oliveira, UTAD, M. Delgado, Universidade de Porto, Paulo Vasco, UTAD
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The multivariate extremal index and tail 
dependence
by Helena Ferreira*

*  Department of Mathematics — University of Beira Interior, Covilhã

Abstract.—If we obtain a tail dependence coefficient of the common distribution of the vectors in a 
multivariate stationary sequence then we do not have necessarily the correspondent coefficient of the 
limiting multivariate extreme value model. In opposition to sequences of independent and identically 
distributed random vectors, the local clustering of extremes allowed by stationarity can increase
or decrease the tail dependence.
 The temporal dependence at extreme levels can be summarized by the function multivariate extremal 
index and its effect in the tail dependence is well illustrated with Multivariate Maxima of Moving Maxima 
processes.

Keywords.—multivariate moving maxima, multivariate extremal index, tail dependence, multivariate 
extreme value distribution.

1. IntroductIon

For a random vector  with continuous 
marginal distributions  and copula , let the bi-
variate (upper) tail dependence coefficients  
be defined by 

,

for . Tail dependence coefficients measure 
the probability of extreme values occurring for one ran-
dom variable given that another assumes an extreme value 
too. Positive values correspond to tail dependence and 
null values mean tail independence. These coefficients 
can be defined via copulas and it holds that

,

where  is the copula of the sub-vector  ([4], [7]).
 Let  be a multivariate distribution function with 
continuous marginals, which is in the domain of attrac-
tion of a Multivariate Extreme Value (henceforth MEV) 
distribution  with standard  Fréchet margins, that is, 

 with marginal distribu-
tions , , . It is known 
that any bivariate tail dependence coefficient of  is the 
same as the corresponding coefficient of  ([8]).

(1)

(2)

 Let  be a multivariate stationary se-
quence  such that  and  is 
the vector of componentwise maxima from  . 
If , for 
some MEV distribution , one question that naturally 
arises is Does dependence across the sequence affect the 
bivariate tail dependence of the limiting MEV? In other 
words, we would like to know the relation between the 
tail dependence coefficients of the limiting MEV and 
the limiting MEV

,

where  is the vector of pointwise 
maxima for a sequence of i.i.d. random vectors  
associated to , that is, such that, .
 Our main purpose is to compare the bivariate tail 
dependence coefficients for the margins of the two Mul-
tivariate Extreme Value distributions  and  through 
the function multivariate extremal index ([6]), which re-
sumes temporal dependence in .
 We recall that the dimensional stationary se-
quence  is said to have a multivariate extremal in-
dex , , if for each  in   , 

give us your opinion on the usefulness or not of this kind 
of meetings for the development of an area, in particu-
lar in an area that constitutes a small intersection point 
of several others.

Valentina.—Numerical semigroups is apparently a narrow subject, 
but it gathers people from different areas.

 Thus, the most interesting talks in the meeting were for me the 
talks where also other subjects, e.g. from commutative algebra or 
from code theory, appear. 

 It was also interesting and useful to meet personally some 
mathematicians who worked on similar problems than me and that I 
know only though their papers.

 The meeting was also pleasant because there are not people 
that consider themselves big stars, as sometime happens, and there 
was a very nice cooperative atmosphere.

José Carlos.—These meetings are very useful since they encourage 
the grouping of mathematicians interested in the study and 

applications of numerical semigroups coming from all over the world. 
This provides a contact at first hand with the latest advances in this 
field. It also provides discussions between different researchers that 
could not happen otherwise.

Ralf.— It is very important to have a chance to meet people in this 
relatively narrow area. This gives possibilities to talk about problems, 
but still to get views from different angles.

Scott.— I think it is highly useful. Most of the participants at the 
IMNS meetings found numerical semigroups by working in some other 
area. In my case, it was Commutative Algebra. In other cases, it was 
Computer Science, Graph Theory, Algebraic Geometry, …. The list 
is almost endless. I am not so sure that the intersection mentioned 
above is so small. In fact, I think it has grown drastically over the 
past 10 years and I believe that attendance at the next IMNS meetings 
will exceed that of any of the first three editions of this congress.
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there exists levels , , satisfying

,

and

.

The multivariate extremal index, although dependent 
of , is an homogeneous function of order zero and if 
it exists for  then any sequence of sub-vectors 

 with indices in  has multivariate 
extremal index

.

Moreover, for each marginal sequence , the ex-
tremal index  is constant.
 Under suitable long range dependence conditions 
for the stationary sequence , like strong-mixing 
condition, and for  we have 

,

where  denotes the indicator function. That is, the ex-
tremal index is the reciprocal of the limiting mean of the 
cluster size of exceedances of .
 As motivation, we first compare in the next sec-
tion the bivariate tail dependence coefficients of  and 

 arising in two Multivariate Maxima Moving Maxima 
(henceforth M4) processes ([12]), where we can compute 
directly these coefficients. Next we present the main re-
sult with a corollary on the M4 processes.
 Since bivariate tail dependence for MEV distribu-
tions is related with the extremal coefficients ([13], [11]), 
we translate the main result in terms of these coefficients.
 Finally, in the last section we discuss the multivari-
ate generalizations of the results.

2. M4 exaMples

Let  be an array of independent random 
vectors with standard Fréchet margins. A multivariate 
maxima of moving maxima process is defined by

,

, where , are non-
negative constants satisfying

.

(3)

Extremal behaviour of these processes was developed 
in [12], where it is proved that the sequence  has 
multivariate extremal index 

.

and the extremal index of  is

.

The M4 class of processes, which are very flexible mod-
els for temporally dependent processes, plays a remark-
able role in the multivariate extreme value theory since 
the multivariate extremal index of a stationary max-sta-
ble sequence  may be approximated uniformly by 
the multivariate extremal index of an M4 sequence ([1]).
 The common copula  of  is de-
fined by

,

. The dependence across the  di-
mensions is regulated by the structure of the signatures 

 in each th moving pattern. We will consider two 
examples with a finite number  of moving patterns and 
finite range  for its signatures.

Example 1.—We first consider a M4 process with one 
moving pattern and finite range  for the se-
quence dependence, defined as follows. For , let

We have in this case,

and
,

where  denotes the copula of . Otherwise

.

Therefore  and .

Example 2.—We will now consider a modification in 
the above example through the introduction of one more 
pattern. Let, for each ,

.

We have the same  and  as in the previous 
example, but here

and therefore

.

Then .

These examples show that the dependence structure of 
the sequence can increase or decrease the tail depend-
ence coefficients in the limiting MEV model. In the next 
proposition  we will quantify such variation through the 
function  multivariate extremal index.

3. MaIn result

In the this section we will relate  with , where 
 is the copula of the MEV distribution  and  corre-

sponds to the limiting MEV distribution for the associ-
ated i.i.d. sequence. We first remark that it follows from 
the definition of the multivariate extremal index 

,

and

.

Then

,

where  is the bivariate extremal index of 
. Therefore, for each , we 

have 

.

This relation enables us to compare the tail dependence 
coefficients  with  through the function .

Proposition 3.1.—If  and  satisfy (4) then, for each 
, it holds that

(a) ,

(4)

(b) .

Proof.—From the spectral measure representation of  
([2]), the copula  can be written as follows:

,

where  is a finite measure on the unit shere  of  
satisfying , . Then

.

By using (4) and the homogeneity of order zero of the 
multivariate extremal index, it follows that

.

To obtain the second statement we combine (a) and the 
max-stability of . 

The previous result is valid to any MEV copulas  
and  copulas related by a multivariate extremal index 

, that is, satisfying the relation

,

, which leads to (4).
 For the particular case of M4 processes it is known 
([3]) that 

,

which is in general greater than zero. We add now, as a 
corollary of the previous proposition, the expression of  

 for these processes.

(5)

(6)

(7)
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Corollary 3.2.—Let  be a M4 process defined as 
in (2). Then, for any , it holds that

(a) ,

(b) if  then ,

(c)  if and only if

.

We can apply the previous formula in (a) and find the 
same results in the previous examples.
 As we have seen, it is easy to construct examples for 
which  or . However, if  
then , as a consequence of the Proposition 3.1 
and the Corollary 2 in [1], which states that  
leads to . In fact, as a consequence of 
this result, we will have in (a) of the Proposition 3.1.,

.

Another popular dependence coefficient, which is closely 
related to the multivariate extemal index, is the extrem-
al coefficient. It is a summary coefficient for the extre-
mal dependence introduced by Tiago de Oliveira ([13]) 
for bivariate extreme value distributions and extended 
to MEV distributions in [11]. Let the extremal coeffi-
cient of the MEV copula  be the constant  such that 

, for all .
 Since

,

we get the following relation between the extremal co-
efficient of , the copula  and the multivariate extre-
mal index.

Proposition 3.3.—If  and  satisfy (7) then

.

This result extends in a natural way the known relation 

(8)

and enables to see the Proposition 3.1-(a) as an extension 
of the classical result  ([10]).

4. MultIvarIate taIl dependence coeffIcIents

How to characterise the strength of extremal dependence 
with respect to a particular subset of random variables of 

? One can use conditional orthant tail probabilities of 
 given that the components with indices in the subset 

 are extreme. The tail dependence of bivariate copulas 
can be extended as done in [9] and [5].
 For , let 

.

If for some  the coefficient  exists 
and is positive then we say that  is (upper) orthant tail 
dependent. The relation (2) between the tail dependence 
coefficient and the bivariate copula can also be general-
ized by

,

where  denotes de copula of  and  the -dimen-
sional vector .
 If  then any positive 
tail dependence coefficient  of  is the same as the 
corresponding tail dependence coefficient  of the lim-
iting MEV  ([5]). In the case of , the limiting 
MEV model does not preserve orthant tail dependence 
coefficients.
 Let  denotes the multivariate 
extremal index of the sequence of sub-vectors  
in the sub-vector of  with components in 
.

 By using (8) and (10), we can compute  from the 
copula  as follows.

Proposition 4.1.—If  and  satisfy (7) then 

,

provided the ratio is defined.

We will illustrate the above proposition with the M4 
processes.

(9)

(10)

Example 3.—Let  defined by

We have 

,

,

.

Therefore 

and

.

Exemplo 4.—Let us consider now

We have 

,

,

.

Therefore 

and

.

Examples show that dependence across the sequence can 
increase or decrease the tail dependence coefficients and  

 does not imply that  with  consisting 
of more than one index. Finally, Proposition 3.1 can be 
extended as

,

and a theoretical comparison between  and  fol-
lows from the relation

.
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1. notable eleMents and fIrst probleMs

A numerical semigroup is a subset of  (here  denotes 
the set of nonnegative integers) that is closed under ad-
dition, contains the zero element, and its complement 
in  is finite.
 If  is a nonempty subset of , we denote by  
the submonoid of  generated by , that is,

.

It is well known (see for instance [41, 45]) that  is a 
numerical semigroup if and only if .
 If  is a numerical semigroup and  for some 

 , then we say that  is a system of generators of , 
or that  generates . Moreover,  is a minimal system 
of generators of  if no proper subset of  generates  . 
In [45] it is shown that every numerical semigroup ad-
mits a unique minimal system of generators, and it has 
finitely many elements.
 Let  be a numerical semigroup and let 

 be its minimal system of generators. 
The integers  and  are known as the multiplicity and 
embedding dimension of , and we will refer to them by 
using  and , respectively. This notation might 
seem amazing, but it is not so if one takes into account 
that there exists a large list of manuscripts devoted to the 
study of analytically irreducible one-dimensional local 
domains via their value semigroups, which are numerical 
semigroups. The invariants we just introduced, together 
with others that will show up later in this work, have an 
interpretation in that context, and this is why they have 
been named in this way. Along this line, [3] is a good 
reference for the translation for the terminology used 
in the Theory of Numerical Semigroups and Algebraic 
Geometry.
 Frobenius (1849–1917) during his lectures proposed 
the problem of giving a formula for the greatest integer 

that is not representable as a linear combination, with 
nonnegative integer coefficients, of a fixed set of integers 
with greatest common divisor equal to 1. He also raised 
the question of determining how many positive integers 
do not admit such a representation. With our terminol-
ogy, the first problem is equivalent to that of finding a 
formula in terms of  the generators of a numerical semi-
group  of the greatest integer not belonging to  (recall 
that its complement in  is finite). This number is thus 
known in the literature as the Frobenius number of , and 
we will denote it by . The elements of  
are called gaps of  . Therefore the second problem con-
sists in determining the cardinality of , sometimes 
known as genus of  ([25]) or degree of singularity of  
([3]).
 In [60] Sylvester solves the just quoted problems 
of Frobenius for embedding dimension two. For semi-
groups with embedding dimension greater than or equal 
to three these problems remain open. The current state 
of the problem is quite well collected in [30].
 Let  be a numerical semigroup. Following the termi-
nology introduced in [39] an integer  is said to be a pseu-
do-Frobenius number of  if  and  . 
We will denote by  the set of  pseudo-Frobenius 
numbers of . The cardinality of  is called the type 
of (see [3]) and we will denote it by . It is proved 
in [18] that if , then , and if , 
then . It is also shown that if , then 

 can be arbitrarily large,  and that 
. This is the starting point 

of a new line of research that consists in trying to deter-
mine the type of a numerical semigroup, once other in-
variants like multiplicity, embedding dimension, genus 
or Frobenius number are fixed.
 Wilf in [66] conjectures that if  is a numerical sem-
igroup, then . Some fami-
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lies of numerical semigroups for which it is known that 
the conjecture is true are collected in [16]. Other such 
families can be seen in [23,59]. The general case remains 
open.
 Bras-Amorós computes in [5] the number of numeri-
cal semigroups with genus , and conjectures 
that the growth is similar to that of Fibonacci’s sequence. 
However it has not been proved yet that there are more 
semigroups of genus  than of genus . Several at-
tempts already appear in the literature. Kaplan [23] uses 
an approach that involves counting the semigroups by 
genus and multiplicity. He poses many related conjec-
tures which could be taken literally and be proposed here 
as problems. We suggest them to the reader. A different 
approach, dealing with the asymptoptical behavior of the 
sequence of the number of numerical semigroups by ge-
nus, has been followed by Zhao [69]. Some progress has 
been achieved by Zhai [68], but many questions remain 
open.

2. proportIonally Modular seMIgroups

Following the terminology introduced in [52], a propor-
tionally modular Diophantine inequality is an expression 
of the form , with ,  and  positive inte-
gers. The integers ,  and  are called the factor, the mod-
ulus and the proportion of the inequality, respectively. 
The set  of solutions of the above inequality is a 
numerical semigroup. We say that a numerical semigroup 
is proportionally modular if it is the set of solutions of 
some proportionally modular Diophantine inequality.
 Given a nonempty subset  of , we denote by 

 the submonoid of  generated by , whose 
definition is the same of that used in the previous sec-
tion. Clearly,  is a submonoid of . It is 
proved in [52] that if ,  and  are positive integers with 

, then . Since  
when , and the inequality  has the 
same integer solutions as , the 
condition  is not restrictive.
 As a consequence of the results proved in [52], we 
have that a numerical semigroup  is proportionally mod-
ular if and only if there exist two positive rational num-
bers  such that . This is also equivalent 
to the existence of an interval , with nonempty interior, 
of the form  (see [55]).
 By using the notation introduced in [54], a sequence 
of fractions  is said to be a Bé-
zout sequence if ,  are positive integers 
and  for all . The impor-
tance of the Bézout sequences in the study of propor-
tionally modular semigroups highlights in the follow-

ing result proved in [54]. If  is 
a Bézout sequence, then .
 A Bézout sequence  is prop-
er if  for all  with  . 
Clearly, every Bézout sequence can be reduced (by re-
moving some terms) to a proper Bézout sequence with 
the same ends as the original one. It is showed in [9], that 
if  are two reduced fractions, then there ex-
ists an unique proper Bézout sequence with ends  
and . Furthermore, in this work a procedure for ob-
taining this sequence is given.
 It is proved in [54] that if  
is a proper Bézout sequence, then there exists  
such that  (the sequence  
is convex). The following characterization is also proved 
there: a numerical semigroup is proportionally modular 
if and only if there exists a convex ordering if its mini-
mal generators  such that  for 
all  and  for all 

.
 A modular Diophantine inequality is a proportion-
ally modular Diophantine inequality with proportion 
equal to one. A numerical semigroup is said to be mod-
ular if it is the set of solutions of some modular Dio-
phantine inequality. Clearly, every modular numerical 
semigroup is proportionally modular, and this inclusion 
is strict as it is proved in [52]. A formula for  
in function of  and  is given in [53]. The problems of 
finding formulas for , ,  
and  remain open. It is not known if the men-
tioned conjecture of Wilf is true for modular semigroups 
neither.
 A semigroup of the form  is said to be 
ordinary. A numerical semigroup  is an open modu-
lar numerical semigroup if it is ordinary or of it is  the 
form  for some integers . 
Therefore these semigroups are proportionally modular. 
Moreover, it is proved in [55] that every proportionally 
modular numerical semigroup can be expressed as a fi-
nite intersection of open modular numerical semigroups. 
The formulas for the Frobenius number, the genus and 
the type of open modular semigroups are also obtained 
in the just quoted work. However the rest of the prob-
lems previously suggested for modular numerical semi-
groups remain still open.
 As we mentioned above, a characterization for pro-
portionally modular numerical semigroups in terms of 
its systems of minimal generators is given in [54]. The 
question of giving formulas for the Frobenius number, 
genus and type of a proportionally modular numerical 
semigroup in terms of its system of minimal generators 

remains unsolved too.
 Following the terminology in [57], a contracted 
modular Diophantine inequality is an expression of the 
form , where ,  and  are nonnegative 
integers and . Let us denote by  the set of in-
teger solutions of the last inequality. Then  
is a numerical semigroup. An algorithm that allows us 
to determine whether a semigroup is the set of solutions 
of a contracted modular Diophantine equation is given 
in [57]. A formula for the genus of  is also 
given there.
 A contracted proportionally modular Diophantine 
inequality is an expression of the form  , 
with , ,  and  nonnegative integers and . If 
we denote by  the set of solutions of such an 
inequality, then  is a numerical semigroup. 
It is not yet known an algorithm to determine whether a 
semigroup is of this form.
 The Stern-Brocot tree gives a recursive method for 
constructing all the reduced fractions , with  and  
positive integers (see [20]). For constructing this tree we 
start with the expressions  and . In each step of the 
process we insert between each two consecutive expres-
sions  and  its median . We ob-
tain in this way the sequences

The Stern-Brocot tree can now be obtained by connect-
ing each median with the fractions used for computing 
it and being in the previous level but not in the levels 
above it.
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It is proved in [9] that if  is the common predecessor 
of two fractions  in the Stern-Brocot tree, then 

 is the multiplicity of . It could be nice to 
obtain other constants of the semigroup by looking at 
this tree.

3. the quotIent of a nuMerIcal seMIgroup by 
a posItIve Integer

Let  be a numerical semigroup and  be a positive inte-
ger. Let us denote by

.

Clearly,  is a numerical semigroup, and we will call it 
the quotient of  by . According to this notation, we will 
call  one half of  and that  is a quarter of . These 
two cases will have an special importance in this section.
 It is proved in [56] that a numerical semigroup is 
proportionally modular if and only if it is the quotient 
of an embedding dimension two numerical semigroup 
by a positive integer. This result is improved in [32] 
by proving that a numerical semigroup is proportion-
ally modular if and only if it is of the form  
with  and  positive integers. We still do not have for-
mulas for , , , 

 and .
 The next step in this line of research would be study-
ing those numerical semigroups that are the quotient of 
a numerical semigroup with embedding dimension three 
by a positive integer. Unfortunately we do not have a 
procedure that allows us to distinguish such a semigroup 
from the rest. Moreover, we still do not know of any ex-
ample of semigroups that are not of this form.
 A numerical semigroup  is symmetric if  
implies . These semigroups have been wide-
ly studied. Their main motivation comes from a work 
by Kunz ([26]) from which it can be deduced that  a nu-
merical semigroup is symmetric if and only if its associ-
ated numerical semigroup ring is Gorenstein. Symmetric 
numerical semigroups always have odd Frobenius num-
ber, thus for numerical semigroups with even Frobenius 
number, the equivalent notion to symmetric semigroups 
is that of pseudo-symmetric numerical semigroups. We 
say that  is a pseudo-symmetric numerical semigroup 
if it has even Frobenius number and for all , we 
have either  or . The concept of ir-
reducible semigroup, introduced in [40], collects these 
two families of semigroups. A numerical semigroup is 
irreducible if it cannot be expressed as the intersection of 
two semigroups that contain it properly. It can be proved 
that a semigroup is irreducible if and only if it is either 
symmetric (with odd Frobenius number) or pseudo-
symmetric (with even Frobenius number).
 Intuition (and the tables of the number of numerical 
semigroups with a given genus or Frobenius number we 
have) tells us that the percentage of irreducible numerical 
semigroups is quite small. It is proved in [44] that eve-
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ry numerical semigroup is one half of an infinite num-
ber of symmetric numerical semigroups. The apparent 
parallelism between symmetric and pseudo-symmetric 
numerical semigroups fails as we can see in [37], where 
it is proved that a numerical semigroup is irreducible if 
and only it is one half of a pseudo-symmetric numeri-
cal semigroup. As a consequence we have that every nu-
merical semigroup  is a quarter of infinitely many pseu-
do-symmetric numerical semigroups. In [61], it is also 
shown that for every positive integer  and every numeri-
cal semigroup , there exist infinitely many symmetric 
numerical semigroups  such that , and if  , 
then there exist infinitely many pseudo-symmetric nu-
merical semigroups  with .
 From the definition, we deduce that a numerical sem-
igroup  is symmetric if and only if . 
Therefore these numerical semigroups verify Wilf’s con-
jecture previously mentioned. We raise the following 
question. If a numerical semigroup verifies Wilf’s con-
jecture, then does so its half?
 It can easily be seen that every numerical semigroup 
can be expressed as a finite intersection of irreducible 
numerical semigroups. A procedure for obtaining such 
a decomposition is given in [50]. Furthermore it is also 
explained how to obtain a decomposition with the least 
possible number of irreducibles. We still do not know 
how many numerical semigroups appear in these mini-
mal decompositions, moreover, we wonder if there ex-
ists a positive integer  such that every numerical semi-
group can be expressed as an intersection of at most  
irreducible numerical semigroups.
 In [62] Toms introduces a class of numerical semi-
groups that are the positive cones of the  groups of cer-
tain -algebras. Given a numerical semigroup we say, in-
spired in this work, that it admits a Toms decomposition if 
and only if there exist positive integers  ,  
and  such that  
for all  and .
 As , we have that  
if a numerical semigroup admits a Toms decomposition, 
then  is a finite intersection of proportionally modular 
numerical semigroups. It is proved in [46] that the re-
ciprocal is also true. Therefore, a numerical semigroup 
admits a Toms decomposition if and only if it is an inter-
section of finitely many proportionally modular numer-
ical semigroups. These kind of semigroups are studied 
in [14], where an algorithm for distinguishing whether a 
numerical semigroup is an intersection of finitely many 
proportionally modular numerical semigroups  is given. 
Furthermore, in the affirmative case it gives us a mini-
mal decomposition, and in the negative case it gives us 

the least numerical semigroup which is intersection of 
proportionally modular semigroups and contains the 
original numerical semigroup (its proportionally modu-
lar closure).
 It is conjectured in [57] that every contracted modu-
lar numerical semigroup admits a Toms decomposition.
 Note that the numerical semigroups that admit a 
Toms decomposition are those that are the set of solu-
tions of a system of proportionally modular Diophan-
tine inequalities. It is proved in [32] that two systems 
of inequalities are always equivalent to another  system 
with all the inequalities having the same modulus, which 
moreover can be chosen to be prime. Now we raise the 
following question: is every system of proportionally 
modular Diophantine inequalities equivalent to a system 
with all proportions being equal to one?, or equivalently, 
if a numerical semigroup admits a Tom decomposition, 
can it be expressed as an intersection of modular numeri-
cal semigroups?
 Following the terminology introduced in [51], a gap 

 in a numerical semigroup  is said to be fundamental if 
 (and therefore  for every integer with 

). Let us denote by  the set of all fundamen-
tal gaps of . If , then  will denote the union 
of all positive divisors of the elements of . It can easily 
be shown that . Therefore, a way to 
represent a semigroup is by giving its fundamental gaps. 
This representation is specially useful when studying the 
quotient of a semigroup  by a positive integer , since 

.
 The cardinality of the set of fundamental gaps of a 
semigroup is an invariant of the semigroup. We can there-
fore open a new line of research by studying numerical 
semigroups attending to their number of fundamental 
gaps. It would be also interesting to find simple suffi-
cient conditions that allow us to decide when a subset 

 of  is the set of fundamental gaps of some numeri-
cal semigroup.
 Let  be a numerical semigroup. In [33] the set  
of all numerical semigroups such that  is studied, 
the semigroup of the “doubles” of . In the just quoted 
work we raise the question of finding a formula that de-
pends on  and allows us to compute the minimum of 
the Frobenius numbers of the doubles of .
 Following this line we can ask ourselves about the 
set of all “triples” (or multiples in general) of a numeri-
cal semigroup.
 Finally, it would be interesting to characterize the 
families of numerical semigroups verifying that any of its 
elements can be realized as a quotient of some element 
of the family by a fixed positive integer.

4. frobenIus varIetIes

A directed graph  is a pair , where  is a non-
empty set whose elements are called vertices, and  is a 
subset of . The elements of  are 
called edges of the graph. A path connecting two vertices 

 and  of  is a sequence of distinct edges of the form 
 with  and . A 

graph  is a tree if there exists a vertex  (called the root 
of ) such that for any other vertex  of , there exists 
an unique path connecting  and . If  is an edge of 
the tree, then  is a son of . A vertex of a tree is a leaf 
if it has no sons.
 Let  be the set of all numerical semigroups. We 
define the graph associated to , , to be the 
graph whose vertices are all the elements of  and 

 is an edge if . In [45], it is 
proved that  is a tree with root , and that the 
sons of  are the subsets , where 

 are the minimal generators of  greater than 
. Therefore  is a leaf of  if it has no minimal 

generators greater than . These results allow us to 
construct recursively the set of numerical semigroups 
starting with .
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The level of a vertex in a directed graph is the length of 
the path connecting this vertex with the root. Note that 
in  the level of a vertex coincides with its genus as 
numerical semigroup. Therefore, the Bras-Amorós’ con-
jecture quoted in the end of the first section can be refor-
mulated by saying that in  there are more vertices 
in the th level than in the th one.
 A Frobenius variety is a nonempty family  of nu-
merical semigroups such that

1) if , then ,

2) if , , then .

The concept of Frobenius variety was introduced in [38] 
with the aim of generalizing most of the results in [6, 14, 
48, 49]. In particular, the semigroups that belong to a   
Frobenius variety can be arranged as a directed tree with 
similar properties to those of .

 Clearly,  is a Frobenius variety. If , then 
 is also a Frobenius variety. In particular, 

, the set of all numerical semigroups that contain , 
is a Frobenius variety. We next give some interesting ex-
amples of Frobenius varieties.
 Inspired by [1], Lipman introduces and motivates 
in [27] the study of Arf rings. The characterization of 
them via their numerical semigroup of values, brings 
us to the following concept: a numerical semigroups  
is said to be Arf if for every , with  we 
have . It is proved in [48] that the set of Arf 
numerical semigroups is a Frobenius variety.
 Saturated rings were introduced independently 
in three distinct ways by Zariski ([67]), Pham-Teissier 
([29]) and Campillo ([10]), although the definitions giv-
en in these works are equivalent on algebraically closed 
fields of characteristic zero. Like in the case of numerical 
semigroups with the Arf property, saturated numerical 
semigroups appear when characterizing these rings in 
terms of their numerical semigroups of values. A numer-
ical semigroup  is saturated if for every  
with  for all  and  being 
integers such that , then we have 

. It is proved in [49] that the set 
of saturated numerical semigroups is a  Frobenius vari-
ety.
 The class of Arf and Saturated numerical semigroups 
is also closed under quotients by positive integers as 
shown in [17], though the larger class of maximal em-
bedding dimension numerical semigroups is not (if  is 
a numerical semigroup, then ; a numerical 
semigroup is said to be a maximal embedding dimension 
semigroup, or to have maximal embedding dimension, if 

). What is the Frobenius variety generated by 
maximal embedding dimension numerical semigroups?
 As a consequence of [14] and [46], it can be deduced 
that the set of numerical semigroups that admit a Toms 
decomposition is a Frobenius variety. Every semigroup 
with embedding dimension two admits a Toms decom-
position. Is the variety of numerical semigroups admit-
ting a Toms decomposition the least  Frobenius variety 
containing all semigroups with embedding dimension 
two?
 The idea of pattern of a numerical semigroup was 
introduced in [6] with the aim of trying to generalize 
the concept of Arf numerical semigroup. A pattern  
of length  is a linear homogeneous polynomial with 
non-zero integer coefficients in  (for  the 
only pattern is ). We will say that numerical sem-
igroup  admits a pattern  if for every 
sequence  of elements in , we have
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. We denote by  the set of all 
numerical semigroups that admit a pattern . Then the 
set of numerical semigroups with the Arf property is 

. It is proved in [6] that for every pattern  of 
a special type (strongly admissible),  is a Frobenius 
variety. What varieties arise in this way? It would be in-
teresting to give a weaker definition of pattern such that 
every variety becomes the variety associated to a pattern.
 The intersection of Frobenius varieties is again a  
Frobenius variety. This fact allows us to construct new 
Frobenius varieties from known Frobenius varieties and 
moreover, it allows us to talk of the Frobenius variety 
generated by a family  of numerical semigroups. This 
variety will be denoted by , and it is defined to be 
the intersection of all Frobenius varieties containing  . 
If  is finite, then  is finite and it is shown in [38] 
how to compute all the elements of .
 Let  be a Frobenius variety. A submonoid  of 

 is a -monoid if it can be expressed as an intersec-
tion of elements of . It is clear that the intersection of 

-monoids is again a -monoid. Thus given  
we can define the -monoid generated by  as the in-
tersection of all -monoids containing . We will de-
note by  this -monoid and we will say that  is a 

 -system of generators of it. If there is no proper subset 
of  being a -system of generators , then  is a 
minimal  -system of generators of . It is proved 

in [38] that every -monoid admits an unique minimal 
-system of generators, and that moreover this system 

is finite.
 We define the directed graph  in the same way 
we defined , that is, as the graph whose vertices are 
the elements of , and  is an edge of the 
above graph if . This graph is a tree with 
root  ([38]). Moreover, the sons of a semigroup  in  
are , where  are the minimal 

-generators of  greater than . This fact allows us 
to find all the elements of the variety  from .
 Figure 1 represents part of the tree associated to the 
variety of numerical semigroups with the Arf property.
 Figure 2 represents part of the tree  corresponding 
to saturated numerical semigroups.
 As a generalization of Bras-Amorós’ conjecture, 
we can raise the following question. If  is a Frobenius 
variety, does there exist on  more vertices in the 

th level than in the th one? The answer to this 
question is no, as it is proved in [38, Example 26]. How-
ever, the same question  in the case of  being infinite 
remains open. Another interesting question would be 
characterizing those Frobenius varieties that verify the 
Bras-Amorós’ conjecture.
 If  is a Frobenius variety and , then it is 
known that  admits an unique minimal -system of 
generators, and moreover it is finite. The cardinality of 

the set above is an invariant of  that will be called the 
embedding -dimension of , and it will be denoted by 

. As a generalization of Wilf’s conjecture, we would 
like to characterize those Frobenius varieties  such that 
for every , then .
 Clearly, the Frobenius variety generated by irreduc-
ible numerical semigroups is , the set of all numerical 
semigroups. What is the Frobenius variety generated only 
by the symmetric ones? and by the pseudo-symmetric 
ones?

5. presentatIons of a nuMerIcal seMIgroup

Let  be a commutative monoid. A congruence  
over  is an equivalence relation that is compatible with 
addition, that is, if  with , then  
for all . The set  endowed with the operation 

 is a monoid. We will call it the quotient 
monoid of  by .
 If  is generated by , then the map 

 is a monoid 
epimorphism. Therefore  is isomorphic to , 
where  is the kernel congruence of , that is,  if 

.
 The intersection of congruences over a monoid  
is again a congruence over . This fact allows us, given 

, to define the concept of congruence generated 
by  as the intersection of all congruences over  con-

taining , and it will be denoted by .
 Rédei proves in [31] that every congruence over 

 is finitely generated, that is, there exists a subset of 
 with finitely many elements generating it. As 

a consequence we have that giving a finitely generated 
monoid is, up to isomorphism, equivalent to giving a fi-
nite subset of .
 If  is a numerical semigroup with  minimal genera-
tors system , then there exists a finite subset  
of  such that  is isomorphic to . We say 
that  is a presentation of . If moreover  has the least 
possible cardinality, then  is a minimal presentation of 
.

 A (non directed) graph  is a pair , where 
 is a nonempty set of elements called vertices, and  

is a subset of . The non ordered 
pair  will be denoted by , and if it belongs to  , 
then we say that it is an edge of . A sequence of the 
form  is a path of length  connect-
ing the vertices  and . A graph is connected if any 
two distinct vertices are connected by a path. A graph 

 is said to be a subgraph of  if  and 
. A connected component of  is a maximal con-

nected subgraph of . It is well known (see for instance 
[28]) that a connected graph with  vertices has at least 

 edges. A (finite) tree with  vertices is a connected 
graph with  edges.

��
��
��

��
��

�

��
��
�

��
��

��

��
�� ��

��
�

��

�� ��

��

Figure 1 Figure 2



CIM :: InternatIonal Center for MatheMatICs Bulletin #33 January 2013 23 22 

 Let us remind now the  method described in [35] 
for computing the minimal presentation of a numerical 
semigroup. Let  be a numerical semigroup with mini-
mal system of generators . For each , let 
us define , where  and 

. If  is connected, we 
take . If  is not connected and  are the 
sets of vertices corresponding to the connected components 
in , then we define , 
where  and its -th component is zero when-
ever . It is proved in [35] that  is a 
minimal presentation for . Let us notice that the set 

 is finite, and that 
its cardinality is an invariant of . A line of research could 
be the study of , and its relation with other invari-
ants of  mentioned above. In [19] affine semigroups (and 
thus numerical semigroups) with a single Betti element are 
studied. What are those numerical semigroups having two 
or three Betti elements?
 It is also shown in [35] how all the minimal presenta-
tions of a semigroup are. In particular, we can determine 
whether a numerical semigroup admits a unique minimal 
presentation. Motivated by the idea of generic ideal, we 
may ask what are the numerical semigroups that admit 
a unique minimal presentation, and characterize them in 
terms of their minimal generators.
 If  is a numerical semigroup, then the cardinality 
of a minimal presentation of  is greater than or equal 
to . Those semigroups that attain this bound are 
said to be complete intersections. This kind of semigroup 
has been well studied, and Delorme gives in [15] a good 
characterization of them. Every numerical semigroup 
with embedding dimension two is a complete intersec-
tion, and every complete intersection is symmetric (see 
[21]). We raise the following questions. What semigroups 
can be expressed as the quotient of a complete intersec-
tion by a positive integer? What is the least Frobenius 
variety containing all the complete intersection numeri-
cal semigroups?
 Let  and  be two numerical semigroups mini-
mally generated by  and , respec-
tively. Let  and  , 
such that . We then say that 

 is a gluing to  and  . 
It is proved in [45] how given minimal presentations 
of  and , one easily gets a minimal presentation of 
. The characterization given by Delorme in [15], with 

this notation, can be reformulated in the following way: 
a numerical semigroup is a complete intersection if and 
only if is a gluing to two numerical semigroups that are 
a complete intersection. A consequence of this result is 

that the set of semigroups that are a complete intersec-
tion is the least family of numerical semigroups contain-
ing  being closed under gluing. It is well known that 
the family of numerical symmetric semigroups is also 
closed under gluing ([45]). It would be interesting to 
study other families closed under gluing. Which is the 
least family containing those semigroups with maximal  
embedding dimension and closed under gluing?
 Bresinsky gives in [7] a family of numerical semi-
groups with embedding dimension four and with cardi-
nality of its minimal presentations arbitrarily large. This 
fact proves that the cardinality of a minimal presentation 
of a numerical semigroup cannot be upper bounded  just 
in function of its embedding dimension. Bresinski also 
proves in [8] that the cardinality for a minimal presenta-
tion of a symmetric numerical semigroup with embed-
ding dimension four can only be three or five. It is conjec-
tured in [36] that if  is a symmetric numerical semigroup 
with , then the cardinality of a minimal presenta-
tion for  is less than or equal to . Ba-
rucci [2] proves with the semigroup  that 
the conjecture above is not true. However, the problem of 
determining if the cardinality of a minimal presentation 
of a symmetric numerical semigroup can be bounded in 
function of the embedding dimension remains open.
 Let  be a finite subset of . By using the re-
sults in [41, 45] it is possible to determine algorithmically 
whether  is isomorphic to a numerical semigroup. 
However we miss in the literature families of subsets  of 

 so that we can assert, without using algorithms, that 
 is isomorphic to a numerical semigroup. More 

specifically, we suggest the following problem: given

    ,

which conditions the integers  and  have to verify 
so that  is isomorphic to a numerical semigroup? 
Herzog proved in [21] that embedding dimension three 
numerical semigroups always have a minimal presenta-
tion of this form. Neat numerical semigroups introduced 
by Komeda in [24] are also of this form.

6. nuMerIcal seMIgroups wIth eMbeddIng 
dIMensIon three

Herzog proves in [21] that a numerical semigroup with 
embedding dimension three is symmetric if and only 
if it is a complete intersection. This fact allows us to 
characterize symmetric numerical semigroups with 
embedding dimension three in the following way (see 
[45]). A numerical semigroup  with  is sym-
metric if and only if , with 

, , ,  and  nonnegative integers, such that  , 
,  and  are greater than or equal to two and 

. Moreover, as it is 
proved in [45],

 
     .

We also have a formula for the genus, since  is symmet-
ric, . Finally, we also know the type, 
since it is proved in [18] that a numerical semigroup is 
symmetric if and only if its type is equal to one.
 We study in [43] the set of pseudo-symmetric nu-
merical semigroups with embedding dimension three. In 
particular, we give the following characterization. A nu-
merical semigroup  with  is pseudo-symmetric 
if and only if for some ordering of its minimal genera-
tors, by taking 

,

then

.

Moreover, in this case,  . 
We also know the genus and the type, since if  is a 
pseudo-symmetric numerical semigroups, then 

 and by [18], .
 Bresinsky ([7]) and Komeda ([24]) fully character-
ize those symmetric and pseudo-symmetric numerical 
semigroups, respectively, with embedding dimension 
four. They show that their minimal presentations always 
have cardinality five.
 Curtis proves in [13] the impossibility of giving an 
algebraic formula for the Frobenius number of a numeri-
cal semigroup in terms of its minimal generators on em-
bedding dimension three. We raise the following question. 
Given a  polynomial   , 
study the family of numerical semigroups  such that if 
 is minimally generated by , and  is the 

Frobenius number of , then .
 Our aim now is studying the set of numerical semi-
groups with embedding dimension three in general. By 
[18], we know that these semigroups have type one or 
two, and by using [22, 34] if we are concerned with the 
Frobenius number and the genus, we can focus ourselves 
in those numerical semigroups whose minimal genera-
tors are pairwise relatively prime. The following result 
appears in [42]. Let ,  and  three pairwise relatively 
prime positive integers. Then the system of equations

has a (unique) positive integer solution if and only if 
 generates minimality . In [42] the 

authors give formulas for the pseudo-Frobenius number 
and the genus of  from the solutions of the 
above system. Thus it seems natural to ask, given positive 
integers , with , when  , 

 and  are pair-
wise relatively prime?
 Let  be a numerical semigroup minimally gen-
erated by three positive integers ,  and  be-
ing pairwise relatively prime. For each , let 

. In [42] 
formulas for  and  from  and  ( ) are 
given. Therefore, if we had a formula for computing  
from  and , we would have solved the problems raised 
by Frobenius for embedding dimension three. Note that 

 is nothing but the multiplicity of the proportionally 
modular semigroup . It is proved in [58] that if 

 is a positive integer such that , then 
. We sug-

gest in this line the problem of finding a formula that 
allows us to give the multiplicity of   
from ,  and .
 Fermat’s Last Theorem asserts that for any integer 

, the Diophantine equation  does not 
admit an integer solution such that . As it is well 
known, this theorem was proved by Wiles, with the help 
of Taylor, in 1995 ([64, 65]) after 300 years of fruitless 
attempts. Let us observe that for , the Diophantine 
equation  has no solution verifying  
with some of the factors equal to . Therefore in order 
to solve this equation it can be supposed that ,  and  
are integers greater than or equal to two, and pairwise 
relatively prime. It is proved in [63], that Fermat’s Last 
Theorem is equivalent to the following statement: if  , 

 and  are integers greater than or equal to two, pair-
wise relatively prime, and  is an integer greater than 
or equal to three, then the proportionally modular nu-
merical semigroup  is not minimally generated 
by . It would be interesting to prove this fact 
without using Fermat’s last Theorem.

7. non-unIque factorIzatIon InvarIants

Let  be a numerical semigroup minimally generated by 
. Then we already know that  is isomor-

phic to , where  is the kernel congruence of the 
epimorphism , … .
 For , the elements in  are known 
as factorizations of . Given , its 
length is . The set of lengths of  is 

. If , then 
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the set of differences of lengths of factorizations of  is 
. Moreover  . 

These sets are known to be eventually periodic ([12]).
 The elasticity of  is  , 
and , which turns out to be a maxi-
mum ([47]). For numerical semigroups it is well known 
that .
 For , the great-
est common divisor of  and  is

.
The distance between  and  is

 .
An -chain (with  a positive integer) joining two 
factorizations  and  of  is a sequence  
of factorizations of  such that ,  and 

. The catenary degree of , , is the 
least  such that for every two factorizations  and  of 
, there is an -chain joining them. The catenary degree 

of  is . This supremum is a maximum 
and actually  ([11]). It was asked 
by F. Halter-Koch whether this invariant is periodic, 
that is, if there exists  such that for  “big enough”, 

.
 The tame degree of , , is the minimum  
such that for any  with  and any 

, there exists , such that  and 
. The tame degree of  is . 

This supremum is again a maximum and it is reached in 
the (finite) set of elements of the form  with  
such that  for some . F. Halter-Koch also 
proposed the problem of studying the eventual periodic-
ity of .
 The invariant  is the least positive integer 
such that whenever  divides  for some 

, then  divides  for some 
. The -primality of  is defined 

as . In [4] it is highlight-
ed that numerical semigroups fulfilling  are 
rare. A characterization for numerical semigroups ful-
filling this condition should be welcomed.
 Another problem proposed by A. Geroldinger is to 
determine when can we find a numerical semigroup and 
an element in it with a given set of lengths.
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1. IntroductIon

“There is strong shadow where there is much light”
Goethe in Götz von Berlichingen

1.1 The basic framework
In order to start playing with dynamical systems we 
need a place to play and a given rule acting on it. Once 
we establish that, we wonder what happens when we re-
peat the rule ad infinitum. We are mainly interested in 
two types of playgrounds: volume manifolds and sym-
plectic manifolds. On volume-manifolds the rule is the 
action of a volume-preserving diffeomomorphism, and 
on symplectic manifolds the rule is the action of a sym-
plectomorphism. Let us now formalize these concepts. 
 Let  stands for a closed, connected and  Rie-
mannian manifold of dimension  and let  be a 
volume-form on . Once we equip  with  we de-
nominate it by a volume-manifold. By a classic result by 
Moser (see [20]) we know that, in brief terms, there is 

Abstract.—We explore uniform hyperbolicity and its relation with the pseudo orbit tracing property. This 
property indicates that a sequence of points which is nearly an orbit (affected with a certain error) may 
be shadowed by a true orbit of the system. We obtain that, when a conservative map has the shadowing 
property and, moreover, all the conservative maps in a -small neighborhood display the same property, 
then the map is globally hyperbolic.

MSC 2000: primary 37D20, 37C50; secondary 37C05, 37J10.

Keywords.—Volume-preserving maps; pseudo-orbits; shadowing; hyperbolicity.

only one volume-form on . Actually, in [20] we find 
and atlas formed by a finite collection of smooth charts 

 where  are open sets and each  
pullbacks the volume on  into . The volume-form al-
lows us to define a measure  on  which we call Leb-
esgue measure. A  ( ) diffeomorphism  
is said to be volume-preserving if it keeps invariant the 
volume structure, say . In other words any Bore-
lian  is such that . We denote these 
maps by . We endow  with the Whitney 
(or strong)  topology (see [1]). In broad terms, two dif-
feomorphisms  and  are -close if they are uniformly 
close as well as their first  derivatives computed in any 
point . Such systems emerges quite naturally when 
considering the time-one map of incompressible flows 
which are a fundamental object in fluid mechanics (see 
e.g. [14]).
 Denote by  a -dimensional ( ) manifold 
with a Riemaniann structure and endowed with a closed 
and nondegenerate 2-form  called symplectic form. Let 

 stands for the volume measure associated to the volume 
form wedging  -times, i.e.,  . By the 
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theorem of Darboux (see e.g. [21 , Theorem 1.18]) there 
exists an atlas , where  is an open sub-
set of , satisfying  with  
being the canonical symplectic form. A diffeomorphism 

 is called a symplectomorphism if it leaves in-
variant the symplectic structure, say . Observe 
that, since , a symplectomorphism  
preserves the volume measure . Moreover, in surfaces, 
area-preserving diffeomorphisms are symplectomor-
phisms since the volume-form equals the symplectic 
form. Symplectomorphisms arise in the classical and 
rational mechanics formalism as the first return Poin-
caré maps of hamiltonian flows. For this reason, it has 
long been one of the most interesting research fields in 
mathematical physics. We suggest the reference [21] for 
more  details on general hamiltonian and symplectic 
theories. Let  denote the set of all symplec-
tomorphisms of class  defined on . We also endow 

 with the  Whitney topology.
 The Riemannian structure induces a norm  on the 
tangent bundle  and also on . Denote the Riemann-
ian distance by . We will use the canonical norm of 
a bounded linear map  given by . 
 Given a diffeomorphism , we denote 

 by composing  -times. We 
say that a point  on a manifold is periodic of period 

 for the diffeomorphism  if  and  is 
the minimum positive integer such that previous equal-
ity holds.

1.2 Tracing orbits and the shadowing property
The notion of shadowing in dynamical systems is in-
spired by the numerical computational idea of estimat-
ing differences between exact and approximate solutions 
along orbits and to understand the influence of the er-
rors that we commit and allow on each iterate. We may 
ask if it is possible to obtain shadowing of approximate 
trajectories in a given dynamical system by exact ones. 
Nevertheless, the computational estimates, fitted with 
a certain error of orbits, are meaningless if they are not 
able to be realized by true orbits of the original system, 
and thus, are mere pixel imprecisions which are charac-
teristic of the computational setup. We refer Pilyugin’s 
book [23] for a completed description on shadowing on 
dynamical systems.
 There are, of course, considerable limitations to the 
amount of information we can extract from a given spe-
cific system that exhibits the shadowing property, since a 

-close system may be absent of that property. For this 
reason it is of great utility and natural to consider that a 
selected model can be slightly perturbed in order to ob-
tain the same property—the stably shadowable dynami-
cal systems. 
 For  and  such that , the sequence 
of points  in  is called a -pseudo orbit for  if 

 for all  (see Figure 1).
 The diffeomorphism  is said to have the shadow-
ing property if for all , there exists , such that 
for any -pseudo orbit , there is a point  which 

-shadows , i.e. .
 Let  (respectively, ) we 
say that  is -stably (or robustly) shadowable if there 
exists a neighborhood  of  in  (respectively 

) such that any  has the shadowing 
property. 
 We point out that  has the shadowing property 
if and only if  has the shadowing property for every 

 (see [23]).

1.3 Hyperbolicity and statement of the results
Let us recall that a periodic point  of period  is said to 
be hyperbolic if the tangent map  has no norm 
one eigenvalues. Being hyperbolic is stable under small 

 perturbations. The notion of hyperbolicity can be gen-
eralized to sets rather than periodic orbits.
 We say that any element  in the set  is Ano-
sov (or globally hyperbolic) if, there exists  such 
that the tangent vector bundle over  splits into two 

-invariant subbundles , with  
and . A completely analog definition for 
symplectomorphisms can be given. We observe that there 
are plenty Anosov diffeomorphisms which are not vol-
ume-preserving and there are plenty Anosov volume-
preserving diffeomorphisms which are not symplectic. 
Anosov was the first one to study these kind if systems 
when considering the geodesic flow on closed Riemann-
ian manifolds displaying negative curvature ([3]).

Example 1.1 [Arnold’s cat map].—The map on the 
two-torus ,  defined by 

is an area-preserving diffeomorphism thus, since the 
manifold is two dimensional also symplectomorphism, 
on the torus which is Anosov.

It is well-known that Anosov diffeomorphisms display 
the shadowing property (see e.g. [24]). However, the 
shadowing property itself do not assure hyperbolicity. 
Notwithstanding, the stability of the shadowing prop-
erty allows us to conclude hyperbolicity (cf. Theorem 
A and Theorem B).
 The concept of structural stability was introduced in 
the mid 1930s by Andronov and Pontrjagin ([2]), it led 
to the construction of uniformly hyperbolic theory, and 
characterizing, along a tour de force program culminated 
in the works by Mañé ([16, 17, 18]), structural stability 
as being essentially equivalent to uniform hyperbolicity. 
In brief terms it means that under small perturbations 
the dynamics are topologically equivalent: a dynamical 

system is -structurally stable if it is topologically con-
jugated to any other system in a  neighbourhood.
 Being an Anosov map is very rigid and imposes 
stringent topological constraints on the manifold. Actu-
ally, in the late sixties, Franks proved that the only sur-
faces that support hyperbolic diffeomorphisms are the 
tori (see [12]).
 Given  (respectively  ) 
we say that  is in  (respectively ) if there 
exists a neighborhood  of  in  (respec-
tively  in ) such that any , has all 
the periodic orbits of hyperbolic type. 
 Our results ([7]) can be seen as a generalization of 
the result in [25] for symplectomorphisms and volume-
preserving diffeomorphisms. Let us state our first result.

Theorem A.—If  is -stably shadow-
able, then  is Anosov.

Furthermore, we obtain the analogous version for vol-
ume-preserving maps.

Theorem B.—If  is -stably shadowable, 
then  is Anosov.

As we already said Anosov diffeomorphisms impose se-
vere topological restrictions to the manifold where they 
are supported. Thus, we present a simple but startling 
consequence of previous theorems that shows how top-
ological conditions on the phase space imposes numeri-
cal restrictions to a given dynamical system.

Corollary 1.2.—If the manifold do not support an 
Anosov diffeomorphisms, then there are no -stably 
shadowable symplectomorphisms neither -stably 
shadowable volume-preserving diffeomorphisms.

We end this introduction by recalling a result in the 
vein of ours; -robust topologically stable symplecto-
morphisms are Anosov (see [10]). Another result which 
relates -robust properties with hyperbolicity is the 
Horita and Tahzibi theorem (see [13]) which states that 

-robust transitive symplectomorphisms are partially 
hyperbolic. We also mention the results in [8, 9] where 
it is obtained that the stable weak shadowing property 
implies weak hyperbolicity. Informally speaking weakly 
shadowing allows that the pseudo-orbits may be approx-
imated by true orbits if one forgets the time parametri-
zation and consider only the distance between the orbit 
and the pseudo-orbit as two sets in the ambient space. 

Figure 1. Illustration of a δ-pseudo-orbit
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Moreover, weak hyperbolicity allows the existence of 
subbundles with neutral behavior.

2. proof of theoreM a
Theorem A is a direct consequence of the following two 
propositions. The following result, due to Newhouse, 
can be found in [22].

Proposition 2.1 ([22]).—If , then  is Ano-
sov.

Proposition 2.2 is a symplectic version of [19, Proposi-
tion 1]. Actually, Moriyasu, while working in the dis-
sipative context, considered the shadowing property in 
the non-wandering set, which, in the symplectic setting, 
and due to Poincaré recurrence, is the whole manifold 

. Let us explain with detail this last step: we say that 
a point  is non-wandering if any open neighborhood 

 of  is such that  for some . A 
point  is said to be recurrent if for any open neighbor-
hood  of  we have  for some . Clearly, 
every recurrent point is non-wandering. It follows from 
Poincaré recurrence theorem (see e.g. [15]) that, in our 
conservative context, we have that -a.e. point  is re-
current. Since  is the Lebesgue measure and the set of 
non-wandering points is closed, we have that the non-
wandering points are the whole manifold .

Proposition 2.2.—If  is a -stably shadowable sym-
plectomorphism, then .

Proof.—The proof is by reductio ad absurdum; let us 
assume that there exists a -stably shadowable sym-
plectomorphism  having a non-hyperbolic closed or-
bit  of period .
 In order to go on with the argument we need to 

 -approximate the symplectomorphism  by a new one, 
, which, in the local coordinates given by Darboux’s 

theorem, is linear in a neighborhood of the periodic or-
bit . To perform this task, in the sympletic setting, and 
taking into account [5, Lemma 3.9], it is required higher 
smoothness of the symplectomorphism. 
 Thus, if  is of class , take , otherwise we use 
Zehnder’s smoothing theorem ([26]) in order to obtain 
a  -stably shadowable symplectomorphism  , arbi-
trarily -close to , and such that  has a periodic orbit 

, close to , with period . We observe that  may not 
be the analytic continuation of  and this is precisely the 
case when  is an eigenvalue of the tangent map .
 If  is not hyperbolic take . If  is hyperbolic 
for , then, since  is -arbitrarily close to , the 
distance between the spectrum of  and the unitary 

circle can be taken arbitrarily close to zero. This means 
that we are in the presence of a quite feeble hyperbolic-
ity, thus in a position to apply [12, Lemma 5.1]to ob-
tain a new -stably shadowable symplectomorphism 

, -close to  and such that  is a non-
hyperbolic periodic orbit.
 At this point, we use the weak pasting lemma ([5, 
Lemma 3.9]) in order to obtain a -stably shadowable 
symplectomorphism  such that, in local canonical co-
ordinates,  is linear and equal to  in a neighborhood 
of the periodic non-hyperbolic orbit, . Moreover, the 
existence of an eigenvalue, , with modulus equal to one 
is associated to a symplectic invariant two-dimensional 
subspace contained in the subspace  associat-
ed to norm-one eigenvalues. Furthermore, up to a per-
turbation using again [12, Lemma 5.1],  can be taken 
rational. This fact assures the existence of periodic or-
bits arbitrarily close to the -orbit of . Thus, there ex-
ists  such that  holds, 
say in an -neighborhood of . Recall that, since  has 
the shadowing property  also has. Therefore, fixing 

 , there exists  such that every -pseu-
do -orbit  is -traced by some point in . Take 

 such that  and a closed -pseudo -or-
bit  such that any ball centered in  and with radius 

 is still contained in the -neighborhood of , moreover, 
take  and .
 By the shadowing property there exists  such 
that  for any . Moreover, we ob-
serve that  for every . Therefore, 

. Finally, we reach a contradiction by noting that

 

  .      

3. voluMe-preservIng dIffeoMorphIsMs

Theorem A also holds on the broader context of volume-
preserving diffeomorphisms. Its proof follows the same 
steps as the one before. The version of Proposition 2.1 
for volume-preserving diffeomorphisms was proved in 
a recent paper by Arbieto and Catalan.

Proposition 3.1 ([4, Theorem 1.1]).—If , 
then  is Anosov.

The proof of Theorem B is now reduced to the proof of 
the following result:

Proposition 3.2.—If  is a -stably shadowable vol-
ume-preserving diffeomorphism, then .

Proof.—Assume that there exists a -stably shadow-
able  having a non-hyperbolic closed orbit 

 of period . Once again we need to -approximate  
by a new one, , which, in the local coordinates given 
by Moser’s theorem ([20]), is linear in a neighborhood 
of the periodic orbit . Taking into account [5, Theorem 
3.6], it is required higher smoothness of the volume-pre-
serving diffeomorphism. 
 Thus, if  is of class , take , otherwise we use 
Avila’s recent proved smoothing theorem ([6]) in order 
to obtain a  -stably shadowable volume-preserving 
diffeomorphism , arbitrarily -close to , and such that 

 has a periodic orbit , close to , with period .
 If  is not hyperbolic take . If  is hyperbol-
ic for , then, its weak hyperbolicity allows us to 
use Franks’ lemma proved in [11, Proposition 7.4] for 
volume-preserving diffeomorphisms and thus obtain a 
new -stably shadowable volume-preserving diffeo-
morphism , -close to  and such that  
is a non-hyperbolic periodic orbit.
 Now we use [5, Theorem 3.6] in order to obtain 
a  -stably shadowable volume-preserving diffeomor-
phism  such that, in local canonical coordinates,  is 
linear and equal to  in a neighborhood of the periodic 
non-hyperbolic orbit, . Moreover, the existence of an 
eigenvalue, , with modulus equal to one is associated 
to an invariant one or two-dimensional subspace con-
tained in the subspace  associated to norm-one 
eigenvalues. If its eigendirection is two-dimensional, up 
to a perturbation using again [11, Proposition 7.4],  can 
be taken rational. This fact assures the existence of pe-
riodic orbits arbitrarily close to the -orbit of . Thus, 
there exists  such that   
holds, say in a -neighborhood of . Finally, we reach a 
contradiction by arguing exactly as we did in the proof 
of Theorem A.  
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